
The incidence of obesity has more than doubled since 
1980, and has now reached worldwide epidemic status1,2. 
In 2014, the WHO estimated that overweight affected 
39% of the human adult population (1.9 billion people), 
and that obesity affected 13% (600 million people)2. 
Most people with obesity show signs of chronic inflam-
mation, hypertension and insulin resistance3,4, and obesity 
increases the risk of developing various health prob-
lems, including heart disease and stroke, osteoarthritis, 
type 2 diabetes mellitus (T2DM) and various cancers5–7.  
As such, obesity is associated with poor quality of life and 
premature death3,8,9. Although genetic predispositions 
have a role in the development of obesity in some indi-
viduals10–12, the obesity epidemic has largely been attrib-
uted to high-calorie diets and sedentary lifestyles2,13. 
Excess body weight, therefore, represents a preventable  
condition that could be largely avoided by lifestyle 
changes.

Obesity essentially represents an imbalance between 
intake and expenditure of energy. Reducing body weight 
by ≥5% has beneficial effects on health and reduces the 
risk of developing cardiovascular disease and T2DM14–16.  
Although the combination of a low-calorie diet and 
regular physical exercise leads to weight loss, and repre-
sents the best approach to prevent and treat obesity, this 

strategy is hard to implement and its efficacy is variable17, 
mainly because of adaptive mechanisms that act to main-
tain energy stores in the body18. Pharmaceutical drugs 
have also been approved for anti-obesogenic treatment. 
Orlistat, the main drug for long-term anti-obesogenic 
treatment, leads to an average reduction in body weight 
of 3% over a 1‑year period16, but can also produce gastro-
intestinal adverse effects, subacute liver failure and acute 
kidney injury19. Other anti-obesogenic drugs, such as 
fenfluramine, sibutramine and rimonabant, have been 
withdrawn from the market because of severe adverse 
effects, including cardiovascular problems, high blood 
pressure, mood disorders and even suicidal tendencies20. 
Molecules that mimic endogenous peptide hormones 
such as glucagon-like peptide 1 (GLP‑1) represent 
another potential class of anti-obesogenic drugs, but these 
need to be delivered intravenously, intranasally or subcu-
taneously. Additionally, these drugs are rapidly cleared 
from the blood, and their long-term safety remains to be 
established21,22. Compared with anti-obesogenic drugs, 
weight-loss surgery by gastric bypass or gastric banding 
is more effective23, but is relatively expensive, physically 
invasive and inapplicable to the majority of overweight 
people. Alternative anti-obesogenic treatments that are 
effective, safe and widely available would be beneficial.
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Insulin resistance
Pathological condition in 
which the body produces 
insulin but fails to adequately 
respond to it.

Anti-obesogenic and antidiabetic 
effects of plants and mushrooms
Jan Martel1,2, David M. Ojcius1–3, Chih-Jung Chang1,2,4–6, Chuan-Sheng Lin1,2,4–6,  
Chia-Chen Lu7, Yun-Fei Ko2,8,9, Shun‑Fu Tseng2,6, Hsin-Chih Lai1,2,4–6,10–12  
and John D. Young1,2,8,9,13

Abstract | Obesity is reaching global epidemic proportions as a result of factors such as 
high-calorie diets and lack of physical exercise. Obesity is now considered to be a medical 
condition, which not only contributes to the risk of developing type 2 diabetes mellitus, 
cardiovascular disease and cancer, but also negatively affects longevity and quality of life. To 
combat this epidemic, anti-obesogenic approaches are required that are safe, widely available 
and inexpensive. Several plants and mushrooms that are consumed in traditional Chinese 
medicine or as nutraceuticals contain antioxidants, fibre and other phytochemicals, and have 
anti-obesogenic and antidiabetic effects through the modulation of diverse cellular and 
physiological pathways. These effects include appetite reduction, modulation of lipid absorption 
and metabolism, enhancement of insulin sensitivity, thermogenesis and changes in the gut 
microbiota. In this Review, we describe the molecular mechanisms that underlie the 
anti-obesogenic and antidiabetic effects of these plants and mushrooms, and propose that 
combining these food items with existing anti-obesogenic approaches might help to reduce 
obesity and its complications.
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Traditional Chinese 
medicine
A system of medical 
treatments that has been 
practiced in China for at least 
2,000 years, including herbal 
medicine, acupuncture, qigong 
and meditation.

Nutraceuticals
Dietary supplements or 
purified compounds that 
produce beneficial 
physiological effects on the 
human body, in addition to 
their nutritive values.

In this Review, we describe the anti-obesogenic effects 
of plants and mushrooms that are used in traditional Chinese 
medicine (TCM) or as functional foods (nutraceuticals).  
Although the anti-obesogenic effects of several plants 
have been described before24–26, we focus here on the cel-
lular and physiological mechanisms that underlie their 
effects on obesity, and highlight results relating to the 
modulation of hormones that control satiety, adipocyte 
function and insulin sensitivity. We also describe the role 
of the gut microbiota in these anti-obesogenic effects. As 
T2DM is intimately associated with the development of  
obesity, we examine the possible antidiabetic effects  
of these phytochemicals. Finally, we assess the epidemiolog-
ical and clinical evidence that plant-based preparations can 
beneficially affect body weight in humans, and highlight  
the remaining challenges in this area.

Historical perspective
Plants have historically been widely used for medici-
nal purposes27,28. For instance, wounded limbs have 
been wrapped in plant leaves to improve healing, and 
plant concoctions have been used as laxatives, emetics, 
anti-pyretics and anti-parasitics. Active compounds have 
now been isolated from plants, and ~50% of pharma
ceutical drugs are estimated, directly or indirectly, to 
be plant derivatives29,30. Notable examples of plant- 
derived drugs include salicylic acid (isolated from the 
bark of the willow tree, leading to the development of 
aspirin), morphine (isolated from the opium poppy), 
quinine (an antimalarial isolated from cinchona 
bark) and atropine (a muscle relaxant isolated from  
nightshade plants)31.

Epidemiological results indicate that consumption 
of plant-based foods can be associated with health 
benefits relating to the incidence of T2DM, obesity, 
cardiovascular disease and some cancers. These effects 
have been attributed to the high content of fibre, phyto
nutrients, vitamins and minerals found in vegetables, 
in addition to the low content of saturated fat32. Herbal 
remedies, in the form of plant extracts or isolated phyto
chemicals, are routinely consumed as health supple-
ments. In 2001, US consumers spent US$1.3 billion on 
weight-loss supplements33. However, questions remain 
about the effectiveness, mode of action and safety of 
these supplements and functional foods33,34.

Plant remedies have been widely used in TCM, a 
2,000‑year-old medical system that includes herbal med-
icine, acupuncture, qigong and meditation. Although the 
efficacy, safety and mechanisms of action of TCM remain 
to be established, several plant compounds derived from 
TCM remedies are now routinely used in conventional 
medicine. For example, artemisinin is one of the main 
anti-malarial drugs currently available, and its discov-
ery and isolation from sweet wormwood resulted in the 
award of half of the 2015 Nobel Prize in Physiology or 
Medicine35. The amphetamine-like compound ephed-
rine was isolated from the plant Ephedra sinica, and is a 
treatment for asthma27. Similarly, the immunosuppres-
sive drug fingolimod was derived from a compound 
produced by the mushroom Isaria sinclairii, and has 
been approved in the USA as a treatment for multi-
ple sclerosis36. In addition, several exotic mushrooms 
used in TCM remedies, including Ganoderma lucidum 
(commonly known as lingzhi), Ophiocordyceps sinensis  
(previously called Cordyceps sinensis) and Agaricus blazei 
Murrill, have shown antidiabetic, anti-inflammatory and 
anticancer effects in experiments involving cell lines, 
laboratory animals and humans37–39. Notably, herbal and 
fungal TCM remedies have anti-obesogenic effects in 
laboratory animals40,41, which suggests that they might 
also have effects on body weight and  lipid metabolism 
in humans. The potential application of a single herb 
or mushroom to the treatment of a human condition 
differs from the practice of TCM, which has a holistic 
approach that generally involves the combination of 
several herbal remedies and other treatments that are 
selected on the basis of specific traits or symptoms of 
the patient.

Key points

•	The prevalence of obesity is increasing worldwide as a result of high-calorie diets and 
sedentary lifestyles

•	Current anti-obesogenic therapies have limited effectiveness and/or severe adverse 
effects

•	Substances in plants and mushrooms have anti-obesogenic and antidiabetic effects 
by regulating appetite, nutrient digestion and absorption, adipogenesis, energy 
expenditure, insulin sensitivity and composition and function of the gut microbiota

•	Clinical data relating to the effectiveness of plants and mushrooms are limited, but 
preliminary evidence suggests they can have beneficial effects on body weight and 
fat accumulation in humans

•	Herbal and fungal phytonutrients could be combined with existing weight-loss 
treatments to optimize anti-obesogenic effects
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Gut microbiota
Community of microorganisms 
living in the gastrointestinal 
tract in animals and humans, 
which has been shown to 
participate in various 
physiological and pathological 
processes in the gut and 
systemically.

Phytochemicals
Bioactive plant components 
that can have physiological 
effects in the human body.

Endoplasmic reticulum
An organelle of eukaryotic cells 
that is involved in protein 
synthesis and sorting, and lipid 
synthesis and metabolism, as 
well as detoxification.

Endoplasmic-reticulum 
stress
Condition in which misfolded 
proteins accumulate in the 
endoplasmic reticulum, leading 
to organelle dysfunction.

Leptin resistance
Pathological condition 
associated with obesity in 
which the body produces the 
hormone leptin, but fails to 
adequately respond to it. 

Suppression of appetite
Feelings of hunger and satiety are regulated by complex 
neural and endocrine interactions between the gut, 
brain and adipose tissues42–44. For instance, the hormone 
ghrelin, which is released by the gastrointestinal tract 
when the stomach is empty, induces hunger by acting on 
hypothalamic brain cells in the central nervous system  
(CNS). The presence of food in the gastrointestinal tract 
activates the vagus nerve afferent pathway, leading to 
inhibition of the hunger centre in the brain. Similarly, 
food intake induces the release of cholecystokinin by 
epithelial cells of the small intestine, which inhibits the  
activity of hunger-stimulating neuropeptide  Y in  
the hypothalamus. Leptin is a satiety-inducing hormone 
that is released by adipocytes upon stimulation with 
insulin. Leptin inhibits the activity of neuropeptide Y 
and the hunger-stimulating fatty acid neurotransmitter  
anandamide, and activates the hunger-suppressing pep-
tide α‑melanocyte-stimulating hormone. Serotonin, 
noradrenaline, dopamine and endocannabinoids also 
regulate appetite and satiety. Sibutramine, an anti- 
obesogenic drug that has been removed from the market  
because of associated risks of cardiovascular events, 
reduces appetite by inhibiting the reuptake of serotonin, 
noradrenaline and dopamine in the CNS20. Rimonabant, 
an anti-obesogenic drug that was marketed in Europe 
before its withdrawal because of adverse effects, reduces 
appetite by blocking cannabinoid receptor 1 (REF. 20).

Potential appetite suppressants have been isolated  
from plants that have uses in TCM. Celastrol is a 
pentacyclic triterpenoid compound that is found in 
the roots of the thunder god vine (FIG. 1), a plant with 
therapeutic uses in TCM for rheumatoid arthritis and 
fever. Celastrol reduces appetite and food intake in mice 
that are fed a high-fat diet (HFD)40, and led to a 45% 
reduction in body weight when given orally (10 mg/kg 
daily) to HFD-fed mice for 3 weeks, an effect that was 
mainly attributed to increased leptin sensitivity relative 
to vehicle-treated controls. The leptin-sensitizing effect 
of celastrol was identified by a screening assay40 for mol-
ecules that reduce endoplasmic reticulum stress, which 
occurs in cells when misfolded proteins accumulate. 
Hypothalamic endoplasmic reticulum stress and activation 
of the unfolded-protein response occur in individuals 
with obesity and are thought to contribute to low levels 
of leptin-receptor signalling and to leptin resistance, both 
of which are associated with obesity45. Leptin resistance 
is the lack of appetite reduction in response to leptin, 
and it occurs despite high blood levels of leptin in obe-
sity46. Celastrol causes reduction of endoplasmic retic-
ulum stress and activation of leptin-receptor signalling 
in the hypothalamus, thereby reducing leptin resistance 
(FIG. 2). Compared with vehicle-only controls, celastrol 
also increases glucose tolerance in HFD-fed mice40. 
Endoplasmic reticulum stress occurs in the pancreatic 
β cells of patients with T2DM, and has been associated 
with β‑cell death induced by hyperglycaemia and hyper-
lipidaemia47. The antidiabetic properties of celastrol 
could result from its effect on endoplasmic reticulum 
stress, as well as from antioxidant and anti-inflammatory 
effects48.

Fenugreek has culinary uses as a spice or a vege-
table in various countries, and has been studied for 
its satiety-inducing effects. In a small, randomized 
crossover study involving 18 otherwise-healthy indi-
viduals with obesity, fenugreek fibre (8 g) given with 
breakfast increased feelings of satiety compared  
with placebo49. Natural plant compounds such as 
ephedrine from Ephedra sinica (FIG. 1) also suppress 
appetite, by activating adrenergic receptors in the hypo-
thalamus (FIG. 2)50,51. However, the use of amphetamine- 
related compounds such as ephedrine is associated with 
severe adverse effects, including addiction, psychiat-
ric symptoms, tachycardia, hypertension and heart 
disease20,52. The possibility of developing safe appe-
tite suppressants from plants is still an area of intense 
investigation.

Effects on digestion and absorption
Dietary fats consisting of triglycerides are hydrolysed 
to release fatty acids, which are absorbed by the mucosa 
of the small intestine. The hydrolysis step is mainly per-
formed by pancreatic lipase, an enzyme that is secreted 
by the pancreas into the small intestine in response to 
food intake. The anti-obesogenic drug orlistat inhibits 
the activity of human pancreatic lipase by forming a 
covalent bond with the enzyme at its catalytic site53. 
Various plant compounds, including caffeine, flavo-
noids, polyphenols and saponins, also inhibit pan-
creatic lipase in vitro (FIG. 2)54, as do extracts of yerba 
mate leaves, which are infused to make a traditional 
South American drink known as mate (chimarrão in 
Portuguese)55. Notably, the inhibitory effect of some 
herbal extracts is comparable to that of orlistat. In a 
screen of 37 plants from TCM, an extract of Prunella 
vulgaris (self-heal) inhibited pancreatic lipase activity 
by 75%, compared with 94% for orlistat56. The plant 
flavonoid quercetin, which is found in many fruits, 
vegetables and grains (FIG. 1), inhibited lipase activity 
by 27%, whereas luteolin, which is found in broccoli, 
celery and green pepper, produced 17% inhibition. 
Plant derivatives might also inhibit other enzymes 
that are involved in food digestion. For example, the 
plant flavonol glycoside montbretin A inhibits human 
pancreatic α-amylase57, which catalyses the hydrolysis 
of starch into sugars.

Food fibre found in the diet or consumed as nutra-
ceuticals, such as chitosan (which can be prepared 
from crustaceans, and also from mushrooms), guar 
gum (from guar beans) and pectin (from plants), 
is not digested by human gastric enzymes, and can 
reduce blood lipid and cholesterol levels by binding to 
dietary fats and inhibiting their absorption (FIG. 2)58,59. 
Dietary fibre has a bulking effect that can induce sati-
ety and delay gastric emptying, leading to a reduction 
in the glycaemic index of a meal. Fibre provides less 
energy than digested carbohydrates, although some 
types of fibre undergo breakdown by fermentation in 
the large intestine, and contribute to dietary energy 
intake. However, plant fibres can also inhibit absorp-
tion of prescription drugs60, although this effect can be 
avoided by following prescription guidelines.
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Figure 1 | Active substances in plants and mushrooms with anti-obesogenic and antidiabetic effects. Examples 
are shown of active compounds that have been identified in plants and mushrooms with anti-obesogenic and antidiabetic 
effects. An expanded version of this figure can be found in Supplementary information S1.
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Enterohepatic circulation
Circulation of bile acids from 
the liver to the small intestine, 
followed by absorption by 
enterocytes and transport 
back to the liver via the blood.

β‑Oxidation
Catabolic process occurring in 
eukaryotic cells in which fatty 
acids are broken down to 
produce ATP and cellular 
metabolites.

Adipokines
Hormones secreted by 
adipocytes.

Phytochemicals such as polyphenols and dietary 
fibre can bind to bile acids (FIG. 2), which are produced 
by the liver from cholesterol and secreted into the small 
intestine to facilitate the digestion and absorption of 
dietary lipids. Bile acids are reabsorbed by enterocytes 
and transported back to the liver, in a process known 
as enterohepatic circulation. When phytochemicals bind 
to bile acids, they inhibit enterohepatic circulation 
and increase bile-acid excretion in faeces59,61, which 
can cause reductions in blood cholesterol levels and  
potentially beneficial effects on the blood lipid profile.

Alteration of adipocyte function
Although HFDs are associated with weight gain, obesity 
and T2DM62, a normal amount of adipose tissue is essen-
tial as a source of energy and to regulate body temperature. 
Body fat consists of white adipose tissue (WAT), which is 
the major site of energy storage, and brown adipose tissue  
(BAT), which contributes to thermogenesis63. A white 
adipocyte contains a large vacuole of lipids in the form 
of triglycerides and cholesteryl esters. In a state of energy 
shortage, triglycerides can be hydrolysed by lipolysis to 
release fatty acids, which can enter the blood and undergo 
β-oxidation in most tissues to produce energy. Compared 
with normal levels, in the presence of an excess of lipids, 
white adipocytes increase in both size and number.

Adipocytes have important endocrine functions, as 
they release hormones and cytokines (adipokines) that 
regulate homeostatic processes including satiety, energy 
levels and immune function64. Hypertrophied adipo-
cytes secrete more pro-inflammatory adipokines, such as 
tumour necrosis factor (TNF) and IL‑6, than adipocytes 
of normal size64. These pro-inflammatory adipokines 
interfere with insulin signalling and induce chronic 
inflammation. Systemic insulin resistance augments the 
demand for insulin and can eventually lead to the devel-
opment of T2DM if the demand exceeds the secretory 
capacity of pancreatic β cells65.

Phytochemicals can inhibit the proliferation and dif-
ferentiation of pre-adipocytes and/or induce apoptosis 
in mature adipocytes. Epigallocatechin gallate (EGCG) 
from green tea (FIG. 1) reduces the viability of pre- 
adipocytes in a dose-dependent and time-dependent man-
ner  in culture66. EGCG at 50–200 μmol/l for 12–24 h and  
the stilbenoid resveratrol (which is found in grapes  
and red wine) at 100 μmol/l for 48 h also induce apop-
tosis in mature adipocytes67–69 (FIG. 2). Other phyto
chemicals (FIG. 1), including genistein70,71 (an isoflavone 
found mainly in soy), glycyrrhizin72 (a constituent of liq-
uorice), capsaicin73 (found in chilli peppers), and querce-
tin68 have similar antiproliferative and pro-apoptotic 
effects on adipocytes. Resveratrol and quercetin inhibit 
expression of peroxisome proliferator-activated recep-
tor‑γ (PPARγ)68, which is the transcription factor that is 
primarily responsible for activating the differentiation of 
mesenchymal stem cells into adipocytes74, and this effect 
might be responsible for the inhibition of adipogenesis 
by these compounds. In experiments involving HFD-fed 
mice75, an ethanolic extract of ginseng roots (500 mg/kg 
daily for 8 weeks) reduced the size of white adipocytes 
by 62% relative to controls without ginseng treatment.

Because adipocytes help to control sensitivity to insu-
lin, compounds that affect adipocytes might also regulate 
insulin sensitivity. Activation of PPARγ downregulates 
expression of several adipokines (including TNF, leptin 
and IL‑6), and induces expression of adiponectin, an adi-
pokine that sensitizes the liver and muscle to insulin76,77. 
Thiazolidinediones are a class of antidiabetic drugs that 
activate PPARγ. Similarly, many plant-derived molecules 
(such as curcumin and honokiol) are partial agonists of 
PPARγ (FIG. 2)78. The results of in vivo studies indicate 
that some natural PPARγ agonists improve glucose 
tolerance and insulin sensitivity in animal models, pro-
ducing fewer adverse effects than thiazolidinediones78. 
Although PPARγ agonists have antidiabetic effects, they 
might also induce weight gain by promoting adipocyte 
development and function79.

Energy expenditure and lipid storage
Various plant products, including ephedrine and caf-
feine, have sympathomimetic and other physiological 
activities that induce lipolysis51. Lipid accumulation and 
energy storage might also be reduced by the induction 
of thermogenesis in BAT and muscles. Results suggest 
that substantial amounts of metabolically active BAT are 
present in humans63,80. BAT is innervated by sympathetic 
nerves, and contains the thermogenic mitochondrial 
brown fat uncoupling protein 1 (UCP1), which produces 
heat by β‑oxidation of lipids and glucose metabolism, 
instead of producing ATP. Thermogenesis is normally 
activated by cold, which stimulates transient receptor 
potential (TRP) channels on sensory neurons, transmit-
ting signals to the brain and activating sympathetic activ-
ity. Expression of the UCP1 analogue UCP3 is induced 
by thyroid hormones, β3-adrenergic agonists and leptin, 
stimulating thermogenesis in muscles and BAT81.

Several plant compounds, including capsaicin and 
catechins such as EGCG, activate TRP channels on neu-
rons, thereby promoting BAT thermogenesis82 (FIG. 2). 
Treatment of HFD-fed rats with an ethanolic extract of a 
variant of Solanum tuberosum (potato), at 100–500 mg/kg  
for 4–6 weeks, activates UCP3 expression in BAT and 
the liver, reducing body weight and fat deposition,  
relative to HFD-only controls83. Plant compounds such 
as berberine, an alkaloid found in Berberis plants (FIG. 1), 
not only induce UCP1 expression in BAT, but also pro-
mote the differentiation of WAT into BAT, thereby  
further contributing to thermogenesis and weight loss84.

Another strategy to enhance energy expenditure 
is to target AMP-activated protein kinase (AMPK), an 
enzyme that acts as a sensor of energy levels85,86. AMPK 
is activated by AMP and ADP, which are produced by the 
hydrolysis of ATP. Activation of AMPK in skeletal muscle 
contributes to cellular energy availability by inhibiting 
anabolic pathways and activating catabolic pathways, 
such as fatty-acid oxidation, which produces ATP and 
reduces lipid storage. AMPK also sensitizes muscle cells 
to insulin, which is beneficial against T2DM. Various 
phytochemicals, including berberine87 and genistein88, 
activate AMPK in adipose tissues, muscles and the liver 
(FIG. 2). Activation of AMPK in WAT by compounds such 
as resveratrol also leads to differentiation into BAT89.
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Inhibition of lipid synthesis is another potential 
anti-obesogenic strategy. Statins are cholesterol-lowering  
drugs that were first isolated from fungi, and inhibit 
3‑hydroxy‑3‑methylglutaryl-coenzyme A reductase 
(HMG-CoA reductase), an important enzyme in the 

cholesterol biosynthesis pathway. Statins also have ben-
eficial effects on the blood lipid profile, and reduce the 
risk of cardiovascular events, compared with placebo90. 
Lovastatin, which was first isolated from the mould 
Aspergillus terreus, is found in various mushrooms, 

Figure 2 | Molecular mechanisms of the antidiabetic and 
anti-obesogenic effects of plants and mushrooms.  
a | Plant compounds such as celastrol reduce body weight by inhibiting 
endoplasmic reticulum (ER) stress in the hypothalamus, thereby 
increasing leptin sensitivity and suppressing appetite. Ephedrine reduces 
appetite by activating adrenergic receptors in the hypothalamus.  
b | Plant polyphenols inhibit pancreatic lipase activity in the duodenum 
and prevent the release (and subsequent absorption) of fatty acids from 
dietary triglycerides. In addition, dietary fibre binds to lipids and bile 
acids, thereby reducing lipid absorption and bile acid reabsorption, 
respectively. c | Phytochemicals including epigallocatechin gallate 
(EGCG), resveratrol and genistein inhibit lipid accumulation by inducing 
apoptosis in adipocytes. Furthermore, honokiol and curcumin activate 
peroxisome proliferator-activated receptor γ (PPARγ), leading to 
secretion of adiponectin, which enhances insulin sensitivity. 
 d | Capsaicin and EGCG activate transient receptor potential (TRP) 
channels on sensory nerves, inducing the release of noradrenaline by 

sympathetic nerves, which activates uncoupling proteins in the 
mitochondria of brown adipose tissue (BAT), producing heat instead of 
ATP. e | Apigenin, quercetin and luteolin have antioxidant effects that 
protect pancreatic β cells from reactive oxygen species (ROS) and 
activation of nuclear factor κ‑light-chain-enhancer of activated B cells 
(NF‑κB), helping to maintain insulin secretion in response to glucose 
intake. In addition, berberine induces β‑cell proliferation, thereby 
maintaining pancreatic function and glucose homeostasis.  
f | Berberine and genistein activate AMP-activated protein kinase (AMPK) 
in the liver and other tissues. AMPK activation reduces energy storage by 
inhibition of anabolic pathways. AMPK activation also enhances energy 
expenditure by inducing catabolism and ATP production. Furthermore, 
lovastatin, a compound found in mushrooms and pu-erh tea, inhibits 
3‑hydroxy‑3‑methylglutaryl-coenzyme A (HMG-CoA) reductase in the 
liver, thereby reducing cholesterol synthesis. Modified with permission 
from Nature Publishing Group © Dietrich, M. O. and Horvath, T. L. Nat. 
Rev. Drug Discov. 11, 675–691 (2012).
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Glucotoxicity
Structural and functional 
damage to pancreatic β cells 
and the target tissues of insulin 
caused by chronic 
hyperglycaemia.

Intestinal tight junctions
Connections between two 
adjacent intestinal cells that 
limits the space between them 
and the passage of material 
from the intestinal lumen to the 
gut mucosa.

including in the fruiting bodies or mycelia of Agaricus, 
Antrodia, Ganoderma, Ophiocordyceps and Pleurotus 
species91,92, as well as in Chinese fermented pu‑erh 
tea (FIG. 1,2)93. Compounds such as EGCG also inhibit 
HMG-CoA reductase activity in vitro94, and might con-
tribute to the reduction of hyperlipidaemia and lipid 
deposition in vivo.

β cells and insulin sensitivity
Pancreatic β cells secrete insulin in response to food 
intake. The release of pro-inflammatory cytokines by 
hypertrophied adipocytes leads to β‑cell dysfunction, 
apoptosis and necrosis, which affects insulin secretion95. 
A number of phytochemicals, including the flavonoids 
apigenin, quercetin and luteolin, protect pancreatic 
β cells from pro-inflammatory cytokines in vitro by 
reducing activation of the transcription factor nuclear 
factor κ‑light-chain-enhancer of activated B  cells 
(NF‑κB) (FIG. 2), relative to the level in the absence of 
flavonoids96. Berberine, curcumin (found in the spice 
turmeric) and catechins also increase the number of 
β cells in animal models of T2DM (FIG. 2)97, although 
the mechanisms underlying this regenerative process 
remains unclear. Similarly, extracts prepared from 
Allium sativum (garlic), Momordica charantia (bitter 
melon) and Crocus sativus (saffron) protect β cells in 
animal models of T2DM97.

Pancreatic β cells have poor antioxidant capac-
ity and are, therefore, susceptible to oxidative stress98. 
Phytochemicals might protect β cells by preventing 
oxidative damage caused by various stimuli, including  
glucotoxicity. Plant polyphenols and flavonoids, for exam-
ple, are known to have antioxidant effects99,100. Some 
phytochemicals also inhibit the expression of enzymes 
that produce reactive oxygen species, including nitric 
oxide synthase101.

Insulin induces glucose uptake by skeletal muscle 
and adipocytes, promoting energy storage, in addi-
tion to inhibiting glucose production by the liver. 
Hormones such as adiponectin and GLP‑1 sensitize 
the body to the action of insulin95,102,103. Mice with 
intraperitoneal injection of 20 mg/kg resveratrol daily 
for 7 weeks have higher levels of GLP‑1 in the blood 
than controls104. Similarly, individuals with T2DM who  
consume 500 mg of green tea extract three times a day 
for 16 weeks have higher levels of GLP‑1 in the blood and 
improved insulin sensitivity compared with placebo- 
treated controls105. Treatment of intestinal endocrine 
cells in vitro with 200 μg/ml chitosan for 2 h results 
in a 1.6‑fold increase in secretion of GLP‑1, com-
pared with untreated cells106. Dietary supplementation 
with chitosan also induces accumulation of GLP‑1 
in the blood of diabetic rats, leading to enhancement  
of insulin sensitivity107. Compared with no treatment, 
glycyrrhizin from liquorice root (FIG. 1) improves insulin 
sensitivity and reduces oxidative stress in diabetic rats; 
the effects are comparable with those of the antidiabetic 
drug glibenclamide108. Cinnamon extract has a dose- 
dependent effect on insulin signalling in diabetic mice109. 
Other herbs, seeds and roots that contain substances 
with possible insulin-sensitizing effects include tarragon, 

fenugreek, bitter melon and ginseng110,111. The mecha-
nisms of action of these extracts and phytochemicals  
require further characterization.

Effects on the gut microbiota
The gut microbiota of an individual contains trillions of 
microorganisms that participate in various physiological 
functions, including vitamin production, maintenance 
of intestinal cells, development of the immune system 
and neutralization of pathogens, drugs and toxins112. The 
gut microbiota also has an important role in extracting 
energy from food and could be involved in the devel-
opment of obesity and T2DM113,114. In obese mice, the 
gut microbiota extracts more energy from food than 
in lean mice115. In humans with obesity, treatment with 
vancomycin for 1 week modulates the gut microbiota 
and reduces insulin sensitivity, compared with baseline 
levels116. Transfer of the gut microbiota from lean indi-
viduals to those with obesity improves insulin sensitivity 
in the recipients117. These results suggest that modula-
tion of the gut microbiota could have beneficial effects 
on obesity and T2DM.

An aqueous extract of the TCM mushroom Ganoderma  
lucidum has anti-obesogenic effects through modula-
tion of the composition of the gut microbiota41,118,119. 
Compared with water, the extract not only reduces 
body weight and fat accumulation in HFD-fed mice, 
but also reduces the expression and secretion of the pro- 
inflammatory cytokines TNF, IL‑1β and IL‑6 (REF. 41). 
In HFD-fed animals, levels of proteins responsible for 
maintaining intestinal tight junctions (occludin and zona 
occludens protein 1) are lower than levels in chow-fed 
animals41. Supplementation with G. lucidum extract 
restores the levels of these proteins, which maintains 
intestinal integrity and prevents translocation of pro- 
inflammatory endotoxins (such as lipopolysaccharide) 
from gut bacteria to the blood. Compared with water 
alone, the G. lucidum extract also improves glucose 
tolerance and insulin sensitivity. Notably, the weight-
loss effects induced by G. lucidum are transmissible via  
horizontal transfer of faeces from G. lucidum-treated 
mice to HFD-fed mice, indicating that these effects are 
mediated by the gut microbiota41.

The active compounds responsible for the anti- 
obesogenic effects of G. lucidum extract are present 
in a fraction that contains high-molecular-weight 
polysaccharides (>300 kDa) (FIG. 1)41. Fungal poly
saccharides are not digested in the stomach or small 
intestine, but they can be digested by bacteria in the 
large intestine to produce short-chain fatty acids 
(SCFAs), which induce the secretion of GLP‑1 by 
intestinal cells103,120. GLP‑1 and SCFAs enter the blood 
and have effects on the brain, muscles, adipose tis-
sues and liver, delaying gastric emptying and leading 
to reductions in appetite, lipid deposition, insu-
lin resistance and inflammation (FIG. 3). Moreover, 
GLP‑1 promotes proliferation and inhibits apoptosis 
in β cells121. Evidence suggests that proteins released 
by intestinal Escherichia coli also stimulate production 
of GLP‑1 and peptide YY and induce satiety and meal 
termination122.
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Foods that are not digestible 
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Mushrooms such as button mushroom (Agaricus 
bisporus) and shiitake (Lentinula edodes) that are rich in 
polysaccharides have been shown to induce the growth 
of beneficial gut bacteria123. Hirsutella sinensis, the 
anamorph (asexual reproductive form) of O. sinensis,  
also modifies the composition of the gut microbi-
ota and has anti-obesogenic, antidiabetic and anti- 
inflammatory effects in HFD-fed mice (Wu, T. R. et al., 
unpublished work). Several substances, such as fibre 
and polysaccharides, can have beneficial effects on 
the human body via the gut microbiota without being 
directly assimilated by the body124. These substances 
can have roles as prebiotics, and are candidates for 
the development of antidiabetic and anti-obesogenic 
treatments.

Epidemiological and clinical evidence
The anti-obesogenic effects of several phytochemicals,  
including celastrol, EGCG, capsaicin and fungal poly-
saccharides, have been demonstrated in laboratory ani-
mals40,41,125,126. Resveratrol reduces fat levels in rodents127, 
but it remains unclear whether similar results will be 
observed in humans128,129. The results of epidemiolog-
ical studies indicate that, compared with consumption 
of foods containing animal products, consumption of 

plant-based foods is associated with reduced incidence 
of obesity and T2DM in humans32,130. In a prospective 
study131 involving 124,086 individuals, who were stud-
ied for up to 24 years, the level of consumption of plant 
and fruit flavonoids (such as anthocyanins, flavonoid 
polymers and flavonols) was negatively associated 
with body weight, after adjustment for diet, cigarette 
smoking and physical activity. In addition, several ran-
domized controlled trials (RCTs) have been performed 
to examine the anti-obesogenic effects of TCM plant 
remedies and nutraceuticals (TABLE 1). For instance, 
a mixture of Ephedra sinica, kola nut and white wil-
low bark given daily for 3 months has been shown to 
reduce body weight by 1.5 kg compared with placebo132. 
According to meta-analyses and RCTs, green tea133, 
green coffee extract134 and green tea extract135 signif-
icantly reduce body weight compared with placebo  
(TABLE 1). These results suggest that some TCM herbal 
remedies and nutraceuticals can help to control body 
weight in individuals with overweight or obesity.

Most clinical studies in this field have been small, 
limited in duration and have not followed standardized 
methodologies. Compared with drugs in clinical trials, 
plants and mushrooms are consumed in relatively large 
quantities, in different combinations and for extended 
periods of time in the normal diet. To demonstrate the 
effectiveness of the consumption of plants, mushrooms 
and their extracts against diabetes and obesity will 
require appropriately designed epidemiological and 
clinical trials. However, few serious adverse effects have 
been reported so far, with the exceptions of formula-
tions containing Ephedra sinica (which produces psy-
chiatric, gastrointestinal, autonomic and cardiovascular 
adverse effects)52 and Garcinia extract (which is asso-
ciated with gastrointestinal problems)136. Comparisons 
are required of the effects of whole functional foods 
and complex extracts with the effects of pure com-
pounds isolated from the same foods. Whole functional 
foods have the advantages of wide availability, ease of 
preparation and low adverse effects, whereas purified  
active compounds are likely to have higher anti- 
obesogenic and antidiabetic activities. Whole func-
tional foods might be best suited for the prevention of 
obesity and T2DM, whereas purified active compounds 
might be preferable as pharmaceutical drugs for the 
treatment of severe symptoms.

Targeting multiple pathways
Some plants, fungi and their extracts contain substances 
that affect multiple cellular targets and physiological 
pathways involved in energy regulation and develop-
ment of obesity and T2DM. For instance, catechins 
might have anti-obesogenic effects via modulation of 
adipogenesis, energy expenditure, lipid digestion and 
metabolism66,67,82,94, whereas polysaccharides could 
reduce body weight and fat deposition by mainte-
nance of intestinal integrity and inhibition of dietary 
fat absorption41,59. By targeting multiple pathways, 
combinations of agents derived from plants and mush-
rooms could have synergistic effects. A combination 
of resveratrol and quercetin has pro-apoptotic effects 

Figure 3 | Polysaccharides from plants and mushrooms have antidiabetic and 
anti-obesogenic effects via the gut microbiota. Dietary polysaccharides are not 
digested in the duodenum because of the absence of suitable enzymes. Polysaccharides 
reach the large intestine, where they are digested by the gut microbiota to short-chain 
fatty acids (SCFAs), which induce the secretion of glucagon-like peptide 1 (GLP‑1) by 
intestinal cells. SCFAs and GLP‑1 reach the blood circulation and have direct and 
indirect anti-obesogenic and antidiabetic effects on the human body, notably acting in 
the brain to reduce appetite and in muscles, adipocytes and the liver to enhance insulin 
sensitivity. In addition, SCFAs and GLP‑1 reduce lipid accumulation, which in turn 
reduces inflammation. Polysaccharides also induce occludin and zonula occludens 
protein 1 (ZO-1) expression in intestinal cells, maintaining intestinal integrity and 
preventing the release of pro-inflammatory bacterial endotoxins into the bloodstream. 
Modified with permission from Nature Publishing Group © Canfora, E. E. et al. Nat. Rev. 
Endocrinol. 11, 577–591 (2015).
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Table 1 | Clinical studies of the weight-loss effects of plants and mushrooms

Material Study population Treatment dose and 
duration

Effect on body weight 
(BW)

Refs

Plants and plant extracts

Caralluma fimbriata 
(cactus)

Overweight adults (n = 50) 1 g per day for 60 days BW NS −1.0 kg (P >0.05) 140*

Crocus sativus extract 
(saffron)

Overweight women (n = 60) 176.5 mg per day for 
8 weeks

BW −1.0 kg (P <0.01) 141*

Ephedra, ephedrine, 
caffeine

MA, 52 studies Variable doses BW −0.9 kg per month 
(P <0.05)

52‡

Ephedra sinica, 
guarana, caffeine

Overweight adults (n = 48) 312 mg extract per day for 
8 weeks

BW −3.2 kg, FM −2.3% 
(P <0.006)

142*

Fenugreek (seed) Overweight males (n = 39) 1,176 mg per day for 
6 weeks

BW NS (P >0.05) 143*

Garcinia atroviridis 
(fruit)

Women with obesity (n = 42) 3.5 g per day for 8 weeks BW −1.4 kg (P <0.05) 144*

Garcinia extract MA, 12 studies (n = 706) Variable doses for ≥2 weeks BW −0.9 kg (P = 0.05) 136‡

Green coffee extract MA, three studies Variable doses BW −2.5 kg (P = 0.006) 134‡

Herbal mixture 
(E. sinica)

Overweight adults (n = 86) ~2.9 g per day for 12 weeks BW −1.5 kg (P = 0.002) 132*

Herbal mixture Overweight women (n = 28) 750 mg per day for 6 weeks BW −1.5 kg (P = 0.89) 145*

Herbal mixture Overweight adults (n = 72) 500 mg per day for 
10 weeks

BW −9.8% (P <0.05); 

BF −16.1% (P <0.05)

146*

Hoodia gordonii 
extract

Overweight women (n = 41) 2,220 mg per day for 
15 days

BW NS +0.1 kg (P >0.05) 147*

Phaseolus vulgaris 
extract (bean)

MA, six studies Variable doses BW NS −1.8 kg (P = 0.1); 
BF −1.9 kg (P = 0.02)

148‡

Phytochemicals

Capsinoids Overweight individuals 
(n = 67)

6 mg per day for 12 weeks BW NS −0.4 kg (P = 0.86); 
AF −0.9% (P = 0.049)

149*

EGCG Women with obesity (n = 83) 300 mg per day for 
12 weeks

BW NS −0.3 kg (P = 0.84), 
FM NS −0.7 kg (P = 0.22)

150*

Glucomannans MA, nine studies Variable doses BW NS −0.2 kg (P = 0.3) 151‡

Phytochemical 
mixture

Adults with obesity (n = 45) ~2 g per day for 8 weeks BW −1.5% (P <0.01); FM 
−5.0% (P <0.001)

152*

Quercetin Overweight individuals 
(n = 93)

150 mg per day for 6 weeks BW, FM NS (P >0.05) 153*

Tea

Camellia sinensis 
(green tea)

Individuals with obesity 
(n = 35)

Four cups per day for 
8 weeks

BW NS −2.4 kg (P = 0.28) 154§

Green tea (catechin 
and caffeine)

Overweight individuals 
(n = 182)

~2,200 mg per day for 
90 days

BW −1.2 kg (P <0.05) 155*

Green tea (EGCG–
caffeine mixture)

MA, 11 studies Variable doses for 
≥12 weeks

BW −1.3 kg (P <0.001) 133‡

Green tea extract 
(catechins)

Adults with obesity (n = 240) 583 mg per day for 
12 weeks

BW −1.6 kg (P <0.05); FM 
−1.8 kg (P <0.05)

156*

Green tea extract Individuals with obesity 
(n = 100)

300 mg per day for 90 days BW −9.0 kg (P <0.001) 135||

Pu‑erh tea extract Overweight individuals 
(n = 36)

999 mg per day for 
12 weeks

BW −1.2 kg (P <0.05) 157*

Mushrooms

Mushrooms (to 
replace red meat)

Adults with obesity (n = 73) Three meals per week for 
6 months

BW NS −2.2 kg (P = 0.281) 158§

The mean body weight loss or gain in the placebo group was subtracted from that of the treatment group. AF, abdominal fat; BF, 
body fat; EGCG, epigallocatechin gallate; FM, fat mass; NS, nonsignificant. *Double-blind, randomized, controlled trial. 
‡Meta-analysis (MA). §Single-blind design. ||No information about blinding.
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on mature adipocytes that are greater than the sum of 
the effects with individual treatments68. Similarly, treat-
ment with EGCG and resveratrol for 3 days synergisti-
cally enhances energy expenditure in individuals who 
are overweight137. Targeting multiple pathways could 
enhance the effectiveness of treatments and prevent 
the development of resistance to a single therapeutic 
agent. Herbal remedies used in TCM often consist of 
a combination of several plants and mushrooms whose 
compounds can synergize to produce anti-obesogenic 
and antidiabetic effects. Combining TCM-based reme-
dies and conventional pharmaceutical drugs is another 
strategy that remains to be investigated in clinical trials.

Quality control
Medicinal plants and mushrooms generally have few 
adverse effects, are inexpensive and are widely avail-
able. However, some products sold as TCM plant 
extracts or neutraceuticals have reduced amounts of 
active compounds, compared with the information pro-
vided on the label132. DNA sequencing of TCM prod-
ucts has demonstrated the presence of material from 
plant and animal species not listed on product labels138. 
Potentially toxic substances have also been found, such 
as aristolochic acid, which has been implicated in the 

development of urothelial cancer139. Correct species 
identification, optimal growth conditions and extract 
preparation, prevention of product alteration, standard-
ization of extract composition and safety evaluation are 
required to enable the widespread use of TCM products 
and neutraceuticals.

Conclusions
Obesity and T2DM are complex conditions, and cur-
rent approaches to prevention and treatment involve a 
combination of factors, such as diet modifications and 
regular exercise. Pharmaceutical approaches to treat-
ment of these conditions require further development. 
Several plant and mushroom species, including a num-
ber that have uses in TCM, have now been shown to have 
anti-obesogenic and/or antidiabetic effects.

Only a fraction of the medically active substances 
available in plants and mushrooms have been identified, 
and the unidentified natural products have great poten-
tial. Modern technologies enable the detailed analysis of 
herbal and fungal extracts to identify active substances. 
These phytochemicals, in the form of the plants and 
mushrooms themselves, extracts or purified compo-
nents, can be combined with existing treatments to 
reduce the prevalence of obesity and its complications.
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